

Differentially Private

Data Querying

Honours Project

BSc. (Hons.) Applied Computing

Sam Edward Angus Hood

070017432

Supervised by Dr. Marco Gaboardi

2014

Differential privacy is a way of protecting the identity of data cohorts whilst providing useful information to

interested parties, by applying noise to aggregate queries. There are two main aims for this project; the first of

which is general research into differential privacy, to determine whether it has a viable place in the context of

smart-homes, and at what point the data becomes too noisy to be usable. The second aim is to create a website

that would function as a place to experiment with differential privacy; allowing the user to perform

aggregations on both simple and home data and compare the results to non-differentially private querying.

1. Introduction .. 1

1.1. Smart-homes .. 1

1.2. Privacy Concerns ... 1

2. Background ... 2

2.1. K-Anonymity ... 2

2.2. Netflix Prize ... 2

2.3. Differential Privacy ... 2

2.4. PINQ .. 3

2.5. Smart-homes .. 4

3. Problem Identification .. 4

3.1. Current state of Differential Privacy .. 4

3.2. Aim .. 4

3.3. Doll’s House and Smart* ... 4

3.4. Typical Users ... 5

3.5. Site requirements ... 5

4. Design ... 5

4.1. Methodologies ... 5

4.2. Pre-design Experimentation ... 5

4.3. Clustering ... 6

4.4. PINQ Issues ... 6

4.5. Tools/software ... 7

4.6. Home Queries and the Database .. 8

4.7. Hosting... 8

5. Implementation ... 9

5.1. From Design to Implementation .. 9

5.2. Architecture ... 9

5.3. Testing ... 9

5.4. Validation .. 10

5.5. Problems and difficulties ... 10

6. Results/Evaluation .. 11

6.1. Results ... 11

6.2. Evaluation .. 12

7. Appraisal ... 12

7.1. Critical Evaluation ... 12

7.2. Future Work ... 13

7.3. Knowledge/skills gained .. 13

7.4. Acknowledgements .. 13

8. Works Cited .. 14

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 1

Differentially Private Data Querying
Samuel E. A. Hood

Honours Project

BSc. (Hons.) Applied Computing

University of Dundee 2014

Supervisor: Dr. Marco Gaboardi

Abstract – Differential privacy is a way of protecting

the identity of data cohorts whilst providing useful

information to interested parties, by applying noise to

aggregate queries. There are two main aims for this

project; the first of which is general research into

differential privacy, to determine whether it has a viable

place in the context of smart-homes, and at what point

the data becomes too noisy to be usable. The second

aim is to create a website that would function as a place

to experiment with differential privacy; allowing the

user to perform aggregations on both simple and home

data and compare the results to non-differentially

private querying.

1. Introduction

Our modern lives are defined by data; every minute

more than 2 million Google searches are performed,

more than 1.8 million things are liked on Facebook, and

72+ hours of video is uploaded to YouTube (Qmee,

2013). The presence of computers in our daily lives has

led to the storage and utilisation of extensive and

complex data covering anything from medical and

police records, to second-by-second statistics of home

temperature and power usage.

Data is everywhere, and with our planet moving

towards an “Internet of Things” (i.e. objects connecting

to the internet, such as light bulbs or flower pots), the

future will bring with it huge amounts more. The

amount of data that is continuously being generated

provides us with an almost real-time data representation

of our world, allowing us to react to situations and

analyse our planet with increasing efficiency, accuracy,

and efficiency.

1.1. Smart-homes

One outcome of ‘things’ being able to connect to the

Internet and upload data, is smart-homes; houses that

are outfitted with dozens of sensors, integrated into

home systems, which provide a data representation of

the current state of many aspects of the home, such as

temperature, power usage and a light levels. This

wealth of data allows a broad range of analyses which

has benefits of allowing unprecedented control of the

home – inhabitants can, for example, have their home

learn their living routines and adjust the environment

accordingly, depending on various factors – a good

example of this is a central heating system that adjusts

the home temperature depending on if there is anyone at

home (inferred from perhaps movement sensors, light

levels, or heuristics). Control of a home in a ‘smart’

way has two main advantages for the inhabitant, the

first of which is allowing their home to be more eco-

friendly, for example a reduction in central heating

activity to only be activated when it’s needed, and not

being accidentally left on all day while the inhabitant

goes to work. Another main advantage is automation,

meaning that the house is much easier to manage; an

example of this is having a fridge/cupboard that

automatically keeps track of the inventory and generates

shopping lists on the fly.

Utility companies also have a great interest in smart-

homes, allowing them to accurately bill the consumer

without having to be in constant contact with them, or

send around staff for meter-readings. The companies

can also collect statistics on their customers with great

ease, allowing them to intelligently distribute their

services to areas that need it most, with a high temporal

resolution.

1.2. Privacy Concerns

While this constant and ever-growing stream of data is

incredibly useful to those who seek to use it for the

previously mentioned feats, it also has a big downside

that comes in the form of privacy. Datasets can be used

for malicious purposes if they are not made sufficiently

private; access to the data can reveal huge amounts of

information about the individual’s daily habits and

routines. An example of this would be attackers

determining statistically the best time to break into a

home based on data gathered about an individual – what

hours they work, if they often take holidays (if so, for

how long), and various other metrics that allow

attackers to build up a profile of someone and find the

weak spots.

Inherently, privacy is a key priority in our “Internet of

Things”. The most obvious way to make a set of data

private is to essentially erase it – if there’s no data left,

attackers have nothing to work from. This isn’t

particularly useful however, as the data then becomes

useless to parties who have no malicious intent.

Evidently there has arisen a trade-off of utility for

privacy, with privacy increasing as utility decreases. A

common way of providing privacy to data is reducing

the amount of information that can be ascertained

through queries – statistical databases intend to provide

maximal utility, whilst protecting the identities of

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 2

individuals in the data, normally by allowing only

aggregate methods to be performed, and not allowing

direct access to the database behind. However these

databases are still open to attacks through various

means.

In this report we cover what form these attacks take,

and investigate the effectiveness of differential privacy

in evading these attacks, both in a general setting (the

theory of differential privacy), and in the context of

smart-homes. We also investigate the PINQ platform,

developed at Microsoft Research as a viable platform

for providing differential privacy, and cover the process

of integrating it with a website that provides tools for

performing experiments with differential privacy.

2. Background

In this section we will firstly cover k-Anonymity, which

is a method designed to preserve privacy by removing

personally identifiable information from data. However,

k-Anonymity does not protect the identities of the data

cohorts when the attacker has additional knowledge (as

shown in the “Netflix Prize” case). Hence we introduce

the role of differential privacy in avoiding privacy

breaches, when the attacker has additional information,

and cover how the mechanism works.

2.1. K-Anonymity

In order to protect the data cohort (that is, the identities

of the individuals associated with certain data), a logical

step is to suppress or generalise personally-identifiable

information in said data – replacing column values such

as name or race with values such as an asterisk, and

generalising other columns (e.g. a value of “25” could

be generalised as “between 20 and 30”). K-Anonymity

does exactly this, and aims to increase the privacy of the

data cohorts, whilst providing useful data on which to

do analyses (Sweeney, 2002, pp. 1-3).

Protecting data with k-Anonymity doesn’t necessarily

mean that the data is free from the possibility of attacks;

additional information released separately to the dataset

can be compared against the anonymised set, hence re-

identifying more about the individual than was intended.

(Sweeney, 2002, pp. 10-12)

2.2. Netflix Prize

The Netflix Prize is a good example of why

consideration of additional information is important in

protecting the privacy of data, despite the data having

all personally identifiable information removed. In an

effort to increase the effectiveness of their

recommendation algorithm (used to determine which

movies or TV shows a user would be interested in based

on previous views), Netflix started a competition in

2006, urging teams to try and improve their algorithm.

There were some security and privacy issues over this;

in 2007, researchers from the University of Texas were

able to compare the data that Netflix had provided with

the Internet Movie Database (IMDB) – the ‘additional

information’, successfully being able to identify several

individuals in the process by comparing similar ratings

for films. This led to four Netflix users filing a lawsuit

in 2009, and the end of the competition.

2.3. Differential Privacy

K-Anonymity can only take you so far on the road to

privacy; suppressing and generalising columns in your

dataset will only protect the identities of those involved

to a degree; it does not take into consideration the

additional information that can be used to identify data

cohorts. To illustrate how one of these attacks would

work, let’s take a list of numbers from 1 to 10 (D1):

D1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Taking the normal average of D1 requires taking the

sum of the list and dividing by the number of values;

the average of D1 would be 5.5. Now, suppose we

remove the 2 from the list to produce a new data set

(D2):

D2 = {1, 3, 4, 5, 6, 7, 8, 9, 10}

As you would imagine, taking the average of D2 will

result in the slightly higher value of ~5.89. This reveals

information about the data behind the scenes,

particularly when someone has additional information;

learning the average when a record is removed, one

could imagine how simple it could be simple to deduce

the exact values of the removed record, and

consequently, all of the values in D1, despite never

having had direct access to it.

To put this example in the context of personal data, we

can take an imaginary medical data table (see Table 1

below) that contains a list of people’s names, and their

systolic blood pressure:

Name Systolic BP

Jim 119

Sue 145

Dave 90

Eric 92

Nancy 149

Table 1: Individuals and their Systolic BP

Let’s say that we have no direct access to this data, but

we are able to perform aggregate functions on it; if we

take the average systolic BP for the entire cohort, we

get 119. If we remove Dave from the data, we get an

average of 126.25; from this we can infer that Dave has

a low systolic blood pressure compared to the average

of the original cohort (the removal of his BP increased

the average) – since the original average BP (119) is

incidentally a normal systolic blood pressure, we can

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 3

make the assumption that Dave likely has hypotension,

without ever seeing directly the BP associated with him.

In the real world, the attacker wouldn’t be able to see

the names associated to the records within the dataset,

as they will be hidden by methods such as k-Anonymity.

This example can only work when the attacker has

external, additional information – a good example of

this would be that the attacker knows the initial average

blood pressure of the data, and then discovers that Dave

just requested the removal of his records from the

dataset. Upon inspection of the data again, with the

knowledge that Dave has left, they will be able to infer

facts about him.

It’s fair to say that this kind of inference is not desirable

in a set of data that is supposed to not reveal anything

about the individuals involved. One way to prevent

attackers from learning this kind of information is to

add noise to the data (generally, Laplace noise is used

due to the inequality required by differential privacy),

meaning that results provided by the data will not be

exactly correct. This means that, referring back to

Table 1, the average of the list has a probability of

being around 126.25, based on the amount of noise

added. Similarly, the average of the dataset with one

record removed has a probability of being around 119,

again based on the amount of noise added. This has an

effect on both the accuracy and privacy of the data by

covering up true values and only providing a probability

of a correct result, of which is controlled by the noise.

It’s important to also note that the more data being used,

the more effectively differential privacy is at preserving

the privacy of the data – this is because the removal of

one record from a huge dataset will already have a

small impact on the overall average, thus making it

easier to cover up with noise.

Imagine we have a differentially private average

function, which adds Laplace noise on a set of data,

with the peak of the distribution being the true average

(126.25). In the context of the blood pressure example,

we have the first query on the full dataset; our

differentially private average query provides us with the

result: 124, found just below the peak of the distribution

(see Figure 1 in blue).

Figure 1: Laplace distributions around the true

average on unaltered (Blue) and altered (Red,

record removed) dataset

Now that we have the ‘noisy average’ of the full dataset,

we can remove a record as before, and run the query

again, this time the distribution is centred on another

average (119) (see Figure 1 in red). The differentially

private function returns a value above the peak (by

chance): 127 – interestingly, the average of the altered

dataset appears greater than the average of the unaltered

dataset, despite the fact that the actual average for the

altered dataset is lower than the unaltered dataset. This

happens purely from the fact that there’s now a

probability that lower or higher results from the actual

average will be calculated, since noise has been added.

Here is where the privacy is preserved; previously we

investigated the dataset using true averages and were

able to discern information that was not there by

removing records (the fact that Dave likely has

hypotension). Now, using differential privacy, we can’t

tell for sure if Dave has hypotension, as repeated

queries may be lower or higher than the noisy average

of the unaltered dataset – meaning no true information

can be inferred simply from comparison of these two

datasets using a single query.

A query or result is said to be differentially private if

the removal (or addition) of one record has limited

impact on the overall result. This definition is

formalised by Cynthia Dwork as follows:

Definition (Dwork, 2008, p. 2) – A random function K

(which adds noise to the data) is (ε, δ)-differentially

private if for every two data sets (D1, D2) differing by

one element, and for every possible observation S ⊆

Range (K):

 [()]

 [()]

This implies for any possible observation that the ratio

of the probabilities given by K on D1 and D2 is bound

by e
ε
.

Epsilon controls how much noise is added to the dataset,

the lower epsilon is, the more noise is added.

2.4. PINQ

Privacy Integrated Queries, or PINQ for short, is an

extensible platform that guarantees unconditional

differential privacy on data (McSherry, 2009). PINQ

uses SQL-like queries, through an extension of

Microsoft’s LINQ (Language Integrated Query). PINQ

provides a platform to query data using several ‘noisy’

aggregations (average, median, and sum), which

provide differentially private results by adding Laplace

noise to the data.

PINQ works by firstly filling an IQueryable<T>

object with the source data, then an aggregation method

can be called to perform queries on the data. For

example, the NoisyAverage() method takes the

following parameters:

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 4

double epsilon,
Expression<Func<T, double>> function

Epsilon determines how much noise is added to the

results of the query, and Function is a lambda function

to be applied to every value in the source data; normally

this is a conversion to a double. Therefore a method

call to get a differentially private “noisy” average with

an epsilon of ‘1’, provided the source data has been

previously provided, would be:

PINQ.NoisyAverage(1, x => (double)x);

Once the lambda function has been applied to the

source data, the values are normalised between -1 and

1; in the current release of PINQ there is limited

functionality for queries – in particular it’s restricted to

data that is between -1 and 1. It was agreed that this

would need to be extended to accommodate data of all

sizes.

PINQ then performs the actual averaging; it calculates

the sum of the normalised values and adds Laplace

noise by providing epsilon to a Laplace method, this is

then divided by the number of values. If the resulting

value is outside the normalised bound of -1 and 1, the

averaging is calculated again – this happens until the

result is within the range of -1 and 1. The result is then

scaled back up to the original range and returned to the

parent method.

2.5. Smart-homes

Using differential privacy to protect home data means

that one can never get truly accurate value of, say the

temperature within the house; close enough that it’s

useful, but noisy enough that you cannot use it along

with additional information to identify more than

simply the temperature. Of course, given enough single

queries, you will be able to learn the noise and infer this.

Understandably, privacy is a number one concern when

it comes to handling the data generated by a smart-

house. The data can reveal surprisingly accurate

information about the day-to-day activities in the house;

this was investigated by a team at the University of

Massachusetts Amherst, where they showed the minute

detail that could be discovered from patterns within the

data, whether it be if there’s a new-born baby in the

house (more power usage in the middle of the night –

parents getting up to feed the baby), to whether or not

the owners had a hot breakfast that morning (more

power usage in the morning) (Greveler, et al., 20XX).

Weather data can also be collected by homes, which can

act as pseudo-weather stations, to help fill in weather

data that aren’t covered by real weather stations.

However, weather data collected by houses can be

cross-compared against the additional information of

national weather data to deduce geographically where

the house is – the more weather information that is

created (humidity, wind speed/direction, etc.), the easier

it is to pinpoint.

3. Problem Identification

3.1. Current state of Differential Privacy

Having been around for about 5 years, differential

privacy is still in its infancy, information about it is

relatively sparse; limited to a handful of research papers,

and of course PINQ’s implementation. Differential

privacy in the context of smart houses has been

investigated, but it still remains relatively difficult to

experiment with differential privacy without building an

ad-hoc solution.

3.2. Aim

There are two main aims for this project; the first of

which is general research into differential privacy, to

determine whether it has a viable place in the context of

smart-homes. The second aim is to create a website that

would function as a place to experiment with

differential privacy; allowing the user to perform

aggregations on both simple and home data.

3.3. Doll’s House and Smart*

Initially it was planned to use the Doll’s House at the

School of Computing, Dundee University, to provide

the data, since it would be useful to use the School’s

own projects, allowing us full control of the home data.

Previously another student had developed software that

generates realistic Doll’s House data without having to

use real people – the idea is that you provide routines,

which are made of actions, to define days of the week,

these then have slight noise added to them and generate

any number of weeks of data (Walker, 2013). It was

intended that we would use this software to generate

several million rows of data to use, but unfortunately,

the amount of data it would generate was low compared

to what we expected (400,000 records for a year as

opposed to our hope of more than 4,000,000). By this

point a large chunk of time had been dedicated to

inputting the individual routines, which was proving to

be a lot of work – the consensus was to scrap the Doll’s

House idea and find a pre-existing dataset, as time

constraints were closing in.

We investigated the paper which discovered patterns in

smart home data (Molina-Markham, et al., 2010), and

found the dataset which had been used – luckily this

dataset was for research and open to the public. Smart*

is a project that aims to optimise home energy usage,

and for this, the team at the University of Massachusetts

Amherst have designed an actual live smart house that

actively collects data, and have uploaded the data for

free use (UMass, n.d.) (Barker, et al., 2012).

The Smart* home provides a huge amount of data for

various sensors around the house, the sensor types are

as follows:

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 5

 Circuit

 Door

 Environmental

 Furnace

 Meter

 Motion

 Phase

 Switch

Altogether the Smart* dataset provides a total of just

over 32 million records, which is more than sufficient

for our needs.

3.4. Typical Users

Users of the site would already have some

understanding of differential privacy, and would use it

to see how it works when applied to real data. It would

be expected that the typical users would be researchers

and students.

3.5. Site requirements

The site is in two main parts; simple data querying, and

home data querying, each having their own

requirements. The simple data provides a way of

performing differentially private aggregations on simple

data lists, that is, lists of numbers in a range (in this case

we restricted the usable values to the range 0 - 100).

Home data querying provides similar functionality, but

uses actual home data instead of lists of simple numbers.

Generally the requirements of the site are fairly

informal; this is because there is no ‘client’ that is

having the site made, so mostly the requirements were

created as and when we needed them. For example, in

the list below, delta (Functional 1.6 & 2.7) was added

near the end when it was decided that it would be

interesting to add the option to use Gaussian noise as

well as Laplace; both of which are standard in obtaining

differential privacy, Laplace using epsilon, and

Gaussian additionally using delta. While the

requirements are informally created, they are designed

to fulfil the needs of a typical user.

The decision to restrict the home data to temperature,

humidity, power and rain rate was that of simplicity; it

wasn’t required that the website analyse every possible

metric of the smart home data, but only a handful in

order to demonstrate differential privacy.

Functional:

1. Must allow the user to input simple data queries:

1.1. Data (list of numbers)

1.2. Epsilon

1.3. Iterations

1.4. Query Type (average/median)

1.5. Noise Type (used in PINQ; Laplace or

Gaussian)

1.6. Delta (used for Gaussian noise)

2. Must allow the user to input home data queries:

2.1. Data (temperature/humidity/power/rain rate)

2.2. Timespan (month/week/day/hour)

2.3. Epsilon

2.4. Iterations

2.5. Query Type (average/median)

2.6. Noise Type (used in PINQ; Laplace or

Gaussian)

2.7. Delta (used for Gaussian noise)

3. Must generate charts based on input, providing

differentially private results using PINQ

4. Shall calculate non-private aggregations for each

query and display them alongside charts (e.g. actual

average displayed next to differentially private

results)

5. Shall provide the user with instructions on how to

use the charting

6. Shall provide background information on

differential privacy including links to papers

Non-functional:

1. Must be easy to use

2. Must work on all main browsers (Chrome, Firefox,

IE, Safari)

4. Design

4.1. Methodologies

Due to the research-oriented nature of the project, a

typical ‘user-centred’ approach was not used; instead

something more like RAD (Rapid Application

Development) was used to iteratively produce parts of

the site depending on our needs as they arose. If

something was taking too long to produce or was

deemed unnecessary, it would be scrapped and the next

part would be worked on.

Project management was provided by Trello, which

works like an agile board. Main pieces of work were

added as tasks, and subtasks were added as required.

The rationale behind using this as opposed to classic

project management tools such as a Gantt chart, is that

there would be too many changes made to merit using a

single Gantt chart; using Trello meant that when there

was an idea coming from experimentation, it could be

added as a task (or subtask) on Trello, allowing a more

fluid, but controlled, project management. Time

constraints were placed on the main tasks (e.g. develop

website by 20
th

 April), and no time constraints were

added to secondary tasks (e.g. optimisation, which can

only happen if the site was finished in time).

4.2. Pre-design Experimentation

Before making decisions on how the site would be

implemented, time was taken to investigate the PINQ

library and find out how it works – this was done as a

Windows Forms application using C# since it was the

suggested language for the library (PINQ is heavily

reliant on LINQ, which is implemented in both C# and

Visual Basic – C# was the preferred choice of these,

mostly due to experience using it regularly).

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 6

A couple of small pieces of software were produced

which were used to find out if PINQ is a viable platform

to implement differential privacy in our website – the

experimentation led to several design ideas and a few

discoveries about PINQ that would have drastically

increased the development time of the website had they

not been found prior.

The first of these pieces of software is a very simple

application that intended to investigate the results that

PINQ provides for basic data sets. This software is

purely experimental and has not much structure, it was

used as a sandbox to experiment with PINQ – it is

included in the project files but is not well commented

or structured.

4.3. Clustering

It was realised that there would need to be two different

types of home data query:

 Simple Query

 Clustered Query

The simple query would be for questions such as “what

is the average power used per week?” which would

require almost exactly the same computation as the

simple data (basic lists of numbers); take all of the

power readings during a week as a list, and perform a

noisy average on it several times. The output of this

would be a chart that shows a distribution of values

around the actual average power.

Clustered queries are a little more complex, and are for

questions like “what is the average power usage per

minute for an entire week?”. For this, the output would

be a chart that shows the average power for one minute

as a bin, and the chart would cover a week’s worth of

data. The rationale behind needing these clustered

queries is to simulate the results found in the paper on

smart metering from Massachusetts (Molina-Markham,

et al., 2010).

A clustering algorithm was developed that would take a

list of data containing timestamps, and turn it into a list

of lists, each outer list being a cluster, and the inner lists

being the values in that cluster.

var cluster = new List<T>();

foreach (var item in data)
{
 if (cluster.Count > 0 &&

item.Timestamp >
cluster[0].Timestamp

 + timestampDelta)
{

 yield return cluster;
 cluster = new List<T>();
 }
 cluster.Add(item);
}

In order to provide a quick analysis on all iterations, it

was decided that the factory design pattern should be

used to spawn a thread for each iteration. This factory

would be the PINQAnalyser class, which repeatedly

spawns threads that perform analysis using PINQ.

4.4. PINQ Issues

During investigation of the PINQ platform, we were

surprised to see that it wasn’t working entirely correctly,

and was producing random results between -1 and 1

(see Figure 2 below) that didn’t line up to anything in

the original data.

The experimental software was used to produce these

results; evidently this was an important step considering

that if this was found at a later point, there would have

been many issues associated with it.

Figure 2: PINQ random noise issue

Figure 2 is the result of a clustered query for average

power usage per hour for a week; the top chart is a

normal average performed on each cluster, with no

privacy involved, and the bottom chart is the result of a

differentially private “noisy” average on each cluster.

As shown, the values in the bottom chart are all over the

place, and don’t seem to represent anything from the

top chart. There were two ideas as to why this was the

case, either the privacy settings were being used

wrongly and in fact we were getting back data so

private that it was just noise, or there was an issue with

PINQ itself. On investigation of the source code of

PINQ, we found the issue, which is in regards to the

normalisation of values between -1 and 1 which

happens before an average is calculated. This was

implemented using the following code:

IQueryable<double> values =
source.Select(function)
.Select(x => x > +1.0 ? +1.0 : x)
.Select(x => x < -1.0 ? -1.0 : x);

This code uses three lambda expressions to alter the

data provided in the source; firstly, the ‘function’ is the

user-defined function that’s passed into the method

(usually conversion to double), the second two alter

each element such that if x is greater than 1, the value is

set to 1 – similarly, if x is less than -1, the value is set to

-1.

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 7

As shown (see Table 2 below), this resulted in an

almost complete loss of data in the situation that the

data values regularly exceeded the range of -1 to 1.

Included is the expected output that we imagined would

be produced, provided that the normalisation scales the

minimum and maximum values to -1 and 1

respectively:

Input Expected Output

1 -1 1

2 -0.77... 1

3 -0.55... 1

4 -0.33... 1

5 -0.11... 1

6 0.11... 1

7 0.33... 1

8 0.55... 1

9 0.77... 1

10 1 1

Table 2: Expected and actual PINQ normalisations

We came to the conclusion PINQ was developed to

analyse data sets whose available data fell between -1

and 1. Considering that if values fall between -1 and 1,

the value would be left alone, one can imagine that the

original data set was a set of very small values, and the

‘normalisation’ was intended to essentially trim the

values down.

As soon as any data that isn’t between -1 and 1 is used,

this breaks down, and you have your dataset reduced to

a set of single values – removing almost all information

that the data contained.

It was agreed that this needed to be changed to

accommodate our data; the code was amended to

perform a basic linear transformation on the values,

scaling the set down using the minimum and maximum

values to re-compute all to between -1 and 1 when

normalised:

var upperValue = source.Max(function);

var lowerValue = source.Min(function);

IQueryable<double> values =
source.Select(function)
.Select(x => (x - lowerValue) /
(upperValue - lowerValue) *
(1.0 - (-1.0)) + -1.0)
.AsQueryable();

As hoped for, this code resulted in the expected values

shown in Table 2. It was later on agreed that using the

maximum/minimum values meant that those were being

shown on the chart output, which is revealing

information about the data that should be private (the

data behind the scenes). Consequently this was

changed to be clamped to static values of 0 and 100,

removing any possibility that values can be inferred

from the values shown on the output chart.

Additionally, to fix the issue of returning values

between -1 and 1, PINQ was further changed to restore

the calculated value to the scale of 0 – 100 before

returning a result.

4.5. Tools/software

The pre-design software confirmed that C# would be

the right tool for the job due to its simple and integrated

LINQ implementation. This in turn indicated that

ASP.NET would be likely the best platform to use for

the website, since a lot of the code could be reused or

translated easily. Originally it was considered that

ASP.NET Web Forms would be used as it was the

comfortable choice, however there was interest in

utilising the relatively new MVC4 platform (MVC5 has

recently been released, but would be unsupported by the

server that was chosen to run the application),

considering that there would be emphasis on moving

fairly large amounts of data back and forth between the

client and server – MVC allows you to represent data

models that are output and amended on a view, which is

perfect for keeping track of several charts in one object,

and simply passing it back and forth. The site was

developed locally on a laptop, at various stages the

project was published to the webserver, and changes

committed to a Github repository. A big aspect of

choosing a version of MVC was the usage of the Razor

view engine, which is a server-side mark-up language

similar to the ASP.NET mark-up language, with the

exception that it allows validation to work automatically

between the client and server.

For example, the model may have some attributes such

as “Name”, using the data annotations library, we can

set this attribute to have a certain validation associated

with it. On the view, it’s simply a case of adding the

following line of code at the point that you require an

error message to pop up (which is also specified in the

model):

@Html.ValidationFor(m => m.Name);

This allows the developer to easily change error

messages and validation methods without having to get

involved with the view whatsoever – meaning that this

can be changed on the fly without bringing the site

down. While this is not something that will be

happening with this project, it provides the benefit of

allowing the views to be much more readable, without

the mess of validation messages and such.

For most visual effects, and general JavaScript work,

jQuery was used – a massive JavaScript library that

provides simpler syntax and abstraction away from pure

JavaScript. Notable uses of this in the project is the

popup boxes for logout, add charts, and loading;

utilising jQuery’s .hide() and .show() methods.

jQuery is also used to provide AJAX functionality to

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 8

MVC – allowing use of the Ajax.BeginForm method

within MVC, providing simplified AJAX requests via

form input.

The charting used by the site was provided by

Highcharts, a JavaScript library that provides a huge

number of charting functionalities (Highcharts, 2014).

Originally it was planned that we would use the C#

charting library, but this seemed incompatible when

used on the web – Highcharts was a much more durable

alternative. The charts exist within the server back-end,

where they are generated and populated, and are sent

back to the view in the form of a model, which is then

used to display on the page using Razor syntax.

Nuget is a package manager that is designed to make it

easy to keep all references up to date within the project

– while this may not be necessary entirely for a short

project, it’s good practice to keep it manageable for

future builds. The main packages handled by Nuget is

the various jQuery libraries used by the project,

Highcharts is not managed by Nuget as changes to the

framework may break the charting so a static and

unchanging JS file was used instead.

Class and sequence diagrams were produced using

StarUML, freeware software that provides all common

UML diagramming functions.

Additional software was used over the course of the

project to fulfil small tasks; Photoshop CS3 was used to

produce UI elements such as the logo and favicon used

on the site, Notepad++ was used for general note-taking

and small amendments to server files that wouldn’t

justify a full re-publish.

4.6. Home Queries and the Database

SQL stored procedures were required to interface the

website and the Smart* database. A single stored

procedure was designed so that data could be pulled for

temperature, humidity, or rain rate, and for a specific

duration (hour/day/week/month). No aggregations or

transformations were allowed to be performed on the

data as it was pulled, in order to restrict all

computations on the data to PINQ alone – ensuring that

the SQL had no effect on the results. The output of the

stored procedure is a list of doubles that represent

whatever was requested.

The rationale behind creating a single query instead of

several is to reduce the amount of work the web

application needs to do to retrieve data – considering

that the data is not as important as the analysis. The

query takes two parameters: @category, which can be

one of either ‘temp’ (temperature), ‘windspeed’, or

‘humidity’, and @timespan, which is the amount of

second’s worth of data that is to be retrieved. The

timespan is restricted by the web application to

hour/day/week/month (3600 / 86400 / 604800 /

2629740 seconds, respectively). Table 3 outlines the

statistics of each combination of query.

Category Timespan Records
Time

(s)

Temperature

Wind Speed

Humidity

Hour 11 0

Day 287 0

Week 2,015 0

Month 8,754 0

Power

Hour 7,286 6

Day 214,593 6

Week 1,687,162 25

Month 7,879,564 43

Table 3: Record counts and time taken for data

retrieval

Temperature, wind speed, and humidity are all from the

‘Environmental’ table, meaning that they all have the

same number of records returned. Power is from the

‘Circuit’ table, and has a massive amount of records

compared to the others; the problem with this is the

retrieval times, any request for a week or above of data

begins to take a very long time – this will have an

impact on the performance of the website.

Below is a sample of the SQL stored procedure covered

previously; the excerpt is the wind speed data retrieval.

Note the @minTimestamp variable, this is used to

determine where to start the chunk of data at – for the

purposes of this project it was set to the first timestamp

in the table.

IF @category = 'windspeed'

BEGIN

 SET @minTimestamp =

 (

 SELECT MIN(TimestampUTC)

FROM Environmental

)

 SELECT windSpeed 'output'

FROM Environmental

WHERE TimestampUTC

> @minTimestamp

 AND TimestampUTC

< @minTimestamp + @timespan

END

4.7. Hosting

The site is hosted on Arlia, a server at the School of

Computing, University of Dundee, which supports

ASP.NET MVC4 up to .NET version 4. Direct access

is available using ‘arlia.computing.dundee.ac.uk/2013-

projects/samhood’.

The domain name ‘differentiallyprivate.com’ was

registered using the domain site 123-Reg.com.

CNAME records were added to the DNS listings of the

domain to point to the Arlia server. The rationale

behind deciding to buy a domain name for the project

was that of professionalism, the site looks much better

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 9

with its own domain name than the server URL – and

also allows potential development in the future.

The database is located on the Namek server; this

requires VPN access to use, but luckily Arlia is on the

same network so extra configuration wasn’t needed to

allow communication between the two.

5. Implementation

5.1. From Design to Implementation

The implementation of this project was experimental by

nature; there was only so much we could design before

implementing it and seeing if it would work.

The majority of the work in this project is centred

around the charting mechanisms for the website; a

typical rotation of design/implementation would involve

firstly thinking about what we need, initially this was

the ability to investigate PINQ, which was then

implemented and used to discover what was next

required. These stepping stones allowed a lot of control

of the project as it progressed, however the downside of

this method was that there were potential dead-ends to

be encountered.

In addition to the website, small pieces of software were

developed to investigate PINQ and solve issues – the

C# Windows Forms application which was created to

experiment with how PINQ works, the logic of which

was ported to the website when it had been worked out.

Additionally the CSV fixer was produced to solve the

issue with missing values in the Smart* data.

5.2. Architecture

The main body of the site is in the charting functionality

– the site was designed to have a generic PINQ analysis

interface, which works for both the home data and

simple data. This section will cover the architecture as

a use case of the charting functionality more than the

entire site; this is because the rest of the site is simple

content as opposed to the complex nature of the

charting. References to ‘chart object’ means an

implementation of the class that is responsible for

storing query parameters, and holds the actual chart.

All server requests in the context of charts are handled

by the chart controller; in response to a GET request

with no parameters; this involves setting up an empty

list of chart objects (referred to from here as

‘MultiChart’). One chart object is added with default

parameters and the entire MultiChart is packaged into

a view and sent to the client. This functionality is also

used when the user clears all queries.

It’s important to note that the client’s page will take the

last element of the MultiChart as being the one that is

currently being ‘added’, the ones that come before that

are dealt with as being already added to the list.

A typical query would start by the user entering the

parameters to be used (functional requirements 1 & 2),

which may vary from the served defaults. This data is

then added to the client-side MultiChart and is posted

back to the server to verify the data and add it to the

server-side MultiChart.

If the server detects that it’s a POST request, this

indicates that the user has submitted a new query to add

to the list. The server will verify the query parameters

are within their respective ranges, if anything is wrong,

the model is sent back to the client with an error. If the

parameters are verified, the server simply creates a new

chart object, adds it to the MultiChart and sends it,

inside a view, back to the client.

Once the user is happy with their chart parameters, they

can start the calculation. The decision was made to

make this part entirely AJAX powered, in order to stop

the browser from sitting and loading for the entire

duration. If the server detects an AJAX request, it sees

it as a trigger to iterate through all the chart objects in

MultiChart, and invoke the calculations for each.

Each chart object calls a PINQAnalyser object with

the query parameters, which in turn performs the given

experiment – executing the query for each iteration and

storing the results before passing it back to the chart

object. An important part of this, which has a direct

impact on the resulting chart, is how the bins are created

(considering putting every value on the chart could be

troublesome to read, especially with a high number of

iterations); after all results have been generated, this

array gets passed into a grouping algorithm, which takes

the size of the chart (fixed to 100) and divides it by the

number of bins requested. This results in a “bin size”,

which is a range as a subset of all the results. The data

array is then iterated through and each value is copied

to its respective bin (e.g. a value of 23 would go in the

3
rd

 bin if 10 bins were used, this would correspond to

bin 20-25 on the output chart). Once the calculations

have been done, the chart controller invokes a chart

object method to build the charts and send the

MultiChart object back to the client. At this point the

charts have been displayed on the client-side and the

process is complete.

5.3. Testing

The site was tested before each commit to ensure it was

properly working. However due to the experimental

nature of the project, this couldn’t always be the case,

some situations arose where it seemed to be working as

intended, but the maths behind were not operating

properly.

Generally the site was tested each time according to the

following requirements:

 Site loads correctly

 No CSS issues found

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 10

 No JavaScript errors when using developer

console in browser

 Each link works correctly

 No runtime errors are encountered while

adding, removing, or generating charts

 Charts generate correctly (see below)

The charting was tested by using a ‘control’ query, that

is, a query that is used every time, meaning that any

problems that have occurred within PINQ, or anything

to do with the charting/computation of results, will

reflect in the resulting chart. This query was usually the

default – 1000 iterations, 10 bins, epsilon 1.0, Laplace

distribution and average query, using the data

{1,2,3,4,5,6,7,8,9,10} (these were scaled up by a factor

of 10 when the results were clamped to 0 – 100).

This would produce a Laplace distribution centred on

the middle of the chart – it was fairly easy to tell if

something had gone wrong as the results would be

wildly skewed.

5.4. Validation

Each parameter that is provided by the user must be

validated to ensure that runtime errors are not

encountered. The following validation regime was used

to validate the data:

 Simple/Home Data

o Iterations
 Must be an integer

 0 > iterations > 100,000 (Hard limit)
o Bins

 Must be an integer

 0 > bins > 250 (Hard limit)
o Epsilon

 Must be a double

 0 > epsilon > Max(double)
o Query type

 Restricted to:

 Average

 Median

o Timespan
 Restricted to:

 Hour

 Week

 Month

 Year

o Distribution
 Restricted to:

 Laplace

 Gaussian
o Delta

 Must be a float
 0 > delta > 1

 Simple Data

o Data list

 Must be comma delimited

 Must contain integers or doubles
 E.g. “1,2,3,4,5”

 Can contain spaces

 Home Data
o Data category

 Restricted to:

 Temperature

 Wind Speed

 Humidity

The limits placed on iterations and bins are based on

performance; the number of iterations directly affects

the time it takes for a chart to generate, with 100,000

iterations taking over 2 minutes to complete. For the

sake of accidental entry of large amounts of iterations,

this was set as the limit for input. The amount of bins

has an effect on how readable the chart is, as the bins

approach 250, they begin to overlap one another

horizontally, therefore vastly reducing the accuracy and

readability of the chart.

5.5. Problems and difficulties

With the exception of the PINQ issues covered

previously, several problems arose during the cycle

between design and implementation. During the phase

of importing the Smart* data into a database, it was

realised that there were many missing values in the

CSV (Column Separated Values) files which contained

all the data. This wouldn’t have been an issue, but the

way SQL server bulk inserts, it needs to have a

consistent number of columns; considering that the

biggest CSV file was 650MB, this was a significant

issue that would have taken forever to fix by hand – it

was solved by the quick development of a tool that goes

through CSV files and fixes the number of columns to a

desired number, filling in the blanks with anything

(zeros in this case). The source code for this is included

with the project files.

A small issue that was encountered was to do with the

version of the .NET framework supported by Arlia – it

supports up to version 4, which meant the initial

thoughts of using version 4.5 had to be scrapped. This

meant excluding a simple threading mechanism using

the ‘async’ and ‘await’ keywords provided by .NET

v4.5, which make threading much easier in a web

application.

Issues arose in the charting section of the site when it

was realised that ASP.NET MVC didn’t support the

same charts as Windows Forms, this was resolved with

the decision to use the Javascript library Highcharts.

Unfortunately there was a problem with this – due to

how the data was returned to the chart (results fell

between two values, e.g. 20-25 – the result could be

anything in between, the resolution of this is based on

the number of bins selected), charts with a high number

of bins would have an incredibly messy X axis, as

Highcharts attempts to cram a value for each bin into it.

The only solution that was found to this problem was to

simply remove the X axis labels, considering that each

bin is labelled with its respective value as you mouse

over them. This resulted in a chart that allowed any

number of bins with little effect on the performance or

readability of the chart. The X axis has been left on the

charts in the results sections for readability.

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 11

6. Results/Evaluation

6.1. Results

This section will cover the results of several queries

using our site, full charts can be found in the report

appendix.

The first result intends to show the drop-off zone

between privacy and utility. For this set of queries, we

used Laplace noise to obtain differentially private

averages for the list: {10, 20, 30, 40, 50, 60, 70, 80, 90,

100}; using various values of epsilon ranging from

0.001 to 10, we obtained the PINQ average 100 times,

split into 20 bins, and took the most common value of

the resulting chart (highest column in chart). If there

were more than one most common value, the lowest of

the set would be taken. Since the chart outputs values

such as “20 - 25” (depending on number of bins), the

lower of these two values were used – this shouldn’t

have any effect on the results. The experiment was run

5 times in order to gain a better idea of shape of the

chart, and to remove the chance of a ‘fluke’ set of

queries that, out of complete random luck, represented

the results entirely differently to what it does most of

the time.

Referring to Figure 3, which illustrates the value of the

calculated average as epsilon rises, and shows each run

as a different colour line; we can clearly see the point at

where epsilon allows for a very accurate query.

Figure 3: Averages vs. Epsilon

The actual average for the data list is 55, which we can

see is being tended towards as epsilon increases. It

seems that for this list of data the ‘sweet spot’, or the

point that the queries move from noise to a reasonable

result, is around epsilon 0.1. After this point, the results

seem to only differ from the true average by around ±20.

By the time epsilon reaches 0.75, the results differ by

only ±10. At epsilon 2+, the query levels off at almost

exactly 55, differing only by being at either 50 or 60, a

difference of ±5 – the resolution of each bin.

The second result achieved is a version of the first

example given in this report for differential privacy; the

comparison of two identical sets of data, one of which

has had a record removed. This experiment was done

using the same data as above (a simple list of numbers);

the parameters of this were 100 iterations with 20 bins,

using an epsilon of 0.5 and the data list being: {10, 20,

30, 40, 50, 60, 70, 80, 90, 100}, which, for the second

part of the experiment, had the ‘100’ removed to

emulate a record (or individual) being removed.

Referring back to Section 2.3, where we describe

differential privacy, we remember that the removal (or

addition) of one record to the set of data can reveal

information about that individual by comparing results

with and without that record; we can protect against this

by adding noise to the results. As shown in Figures 4 &

5, the site successfully hides the result of removing a

record – minimal changes are made to the overall

distribution, and one can imagine when given only one

query (as opposed to the 100 for each chart here), you

will be receiving incredibly similar values whether the

value ‘100’ is present or not.

Figure 4: Simple data with all values included

Figure 5: Simple data with value (100) removed

When investigating the home data, it was found to

display only a singular bin when using a month’s worth

of data, as opposed to an hour (see Figure 6 & Figure 7,

which shows the average temperature for both). It’s

important to note that the actual average of each is

different – the average temperature of the hour is

28.408°F, and the average for a month is 62.179°F,

meaning that the charts are centred at different points.

However, every parameter is the same between them;

the only difference is the amount of data. This

observation confirms a fact about differential privacy,

in that one needs to decide on the value of epsilon to

use based on the data that it’s being used against.

0

20

40

60

80

100

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 12

Figure 6: Home temperature data using an hour’s

worth of data

Figure 7: Home temperature data using a month’s

worth of data

The reason for this is fairly simple; the more data that is

being used, the less impact noise has on the results. In

the case of the hour of data, there are 11 data points,

with the month there are 8754 – this means that during

the average calculation, the tally (sum of all values) is

very high, yet the amount of noise being added to each

value is relatively small.

It seems that differential privacy is a good match for

smart-home data; taking temperature as an example,

using differential privacy means that the results for

temperatures throughout the day are noisy enough so

that it would be difficult to compare it against weather

data accurately enough to locate the home.

Additionally, consider the case where a differentially

private query is used to determine the average

temperature inside the house each day, adding new data

at midnight each night. Even if an attacker knows this

fact, they may be able to compare the previous averages

against the recently added one, but by adding noise to

these queries, they will not be able to tell if the

temperature has truly risen or lowered due to the

probabilistic results, unless they are able to learn the

noise added.

6.2. Evaluation

When comparing the final product to the initial

requirements specification, the final product performs

all the actions that it was initially intended to do. One

notable difference is the exclusion of the ability to

investigate the ‘Power’ field in the home data – this was

down to the fact that values there extended the range

supported by the graph (0 – 100), and despite efforts to

think of another mechanism, it was not worth the effort

to only include one extra metric.

It was decided, due mostly to time constraints, to scrap

the idea of ‘unknown’ data – this was justified

additionally by the fact it did not add much to the

project, the same demonstrations (comparison of dataset

and dataset minus 1) can be achieved by using the

simple data charting on the site. One other removal

from the final website, which was included in the

design section of this report, is the clustering, which

was intended to be used for complex queries that span a

period of time, such as the average temperature every

minute for an hour. The rationale behind the removal is

again partially down to time constraints, and that using

the complex queries that the clustering provided wasn’t

required to demonstrate differential privacy, and would

have added a huge amount of complexity to the website.

Generally, as a platform for experimenting with

differential privacy, our site works well to meet the

requirements, allowing users to experiment with both

basic and home data while performing average and

median aggregate queries with a customisable epsilon,

using a modified version of PINQ.

7. Appraisal

7.1. Critical Evaluation

In hindsight, there are a few things that would be done

differently if this project were to be done again. The

first of which is choosing a different platform on which

to develop the site – MVC4 is a fantastically useful and

powerful platform, however a large chunk of project

time was spent learning how to use it, and being held up

by misunderstandings of how it works. Perhaps the

choice of using the more basic Web Forms, or even

something like JSP would have been useful due to the

prior knowledge of the platforms.

More time could have been dedicated to understanding

how Highcharts work, in the end we had good charts

being generated; however there still exists an issue with

the X axis getting extremely congested when the

number of bins starts to exceed 100 – perhaps a more

elegant solution exists than just removing the labels.

In the end, the threading mechanism was not

implemented in the final system due to time constraints,

this could have been in place initially and been built

around. This would be the preferred method if the

project was to be done again, however, it was felt that

this exclusion didn’t take away from the project much,

as it would simply be speeding the site up, and unless

you’re doing huge queries, you won’t be waiting any

longer than a few seconds.

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 13

7.2. Future Work

As far as future work is concerned, the website could be

extended to provide further functionality; the ability to

query any metric in the Smart* database, and the use of

PINQ’s transformation methods would make

experimentation a lot more controllable.

The interface is not perfect currently, especially the data

entry section that requires a comma-delimited list, is not

particularly user-friendly and would benefit from an

overhaul, perhaps using a completely separate dialogue

box to setup various sets of data, of which could then be

used to setup the queries. This would work well with

another extension, which would be to implement a user

system that allowed you to setup a profile and save

interesting sets of data to it, and being able to recall

them when creating charts (which could also be saved

as results to the profile!). Another interface related

improvement to the site would be a news/research

section that provided a feed of current differential-

privacy-related news (new articles/papers, etc.).

The architecture of the site could be upgraded, the

exclusion of the threading mechanism meant that the

site is slightly slower than it was designed to be – the

addition of this would increase the speed at which

results are returned to the user. Other optimisations

could be performed, such as refactoring the code to

remove unnecessary repeated chunks of code that may

exist. These optimisations will be speed and efficiency

oriented, and would not change how the site works.

Another extension could be to provide more complex

aggregate queries for the user to include in their charts.

PINQ has several more of these to use; data

transformations were not used in this project, they could

be included to modify the data further, and the use of

PINQ’s ‘where’ transformation could be used to replace

the SQL currently used to retrieve sets of data from the

database.

We have integrated PINQ with additional functionality

to use either Laplace or Gaussian noise, and have

altered the aggregate methods such that no work needs

to be done outside of the method to cast values back to

their original scale. The scale used by the method was

set to between 0 and 100 – work needs done to figure

out a more fluid way of doing this, for usage on values

outside of that range. One suggestion would be to use a

random value added onto the true maximum and

minimum of the original range, however this still may

be able to be learnt by repeated queries.

7.3. Knowledge/skills gained

A host of new skills have been acquired during the

project, most notably an understanding of differential

privacy and its role in protecting the privacy of data.

The project also brought to light issues that had not

previously been considered, such as the methods to

ascertain disturbingly accurate information about data

that one has no access to, and how important it is that

this is prevented in as many cases as possible.

Knowledge and understanding of ASP.NET MVC is a

valuable outcome to the project, while fairly difficult to

understand after only using Web Forms, MVC seems a

fantastic replacement for it – the ability to represent a

page’s data using a model will be incredibly useful for

future projects that require ASP.NET/C#. On that note,

C# skills were practiced thoroughly, which already was

a favourite language and was great to work with.

A good amount of mathematics knowledge was gained

during the project, due to the mathematical nature of

differential privacy. Concepts such as distributions,

which previously were acknowledged, are now

understood to a fair degree, despite not having much of

a mathematical background originally.

7.4. Acknowledgements

Sam would firstly like to thank his supervisor, Dr.

Marco Gaboardi, for his guidance throughout the

project, as well as for the project idea and support with

understanding differential privacy. He would also like

to thank his family and friends for their continued

support during his time at university, and the School of

Computing lecturers and other staff who provided the

teaching and help required for a personal project of this

scale.

Sam E A Hood – Honours Project 2014 Differentially Private Data Querying

Page | 14

8. Works Cited

Barker, S. et al., 2012. Smart*: An Open Data Set and

Tools for Enabling Research in Sustainable Homes.

ACM SustKDD’12.

Dwork, C., 2008. Differential Privacy: A Survey of

Results. TAMC 2008.

Dwork, C., 200X. A Firm Foundation for Private Data

Analysis. pp. 1-8.

Dwork, C., Naor, M., Pitassi, T. & Rothblum, G. N.,

2010. Differential Privacy Under Continual Observation.

STOC’10.

Greveler, U., Justus, B. & Loehr, D., 20XX. Multimedia

Content Identification Through Smart Meter Power

Usage Profiles.

Highcharts, 2014. Highcharts. [Online]

Available at: http://www.highcharts.com/

[Accessed March 2014].

McSherry, F., 2009. Privacy Integrated Queries.

SIGMOD '09.

McSherry, F., 2010. Privacy Integrated Queries: An

Extensible Platform for Privacy-Preserving Data

Analysis. Communications of the ACM, 53(9), pp. 89-

97.

Molina-Markham, A. et al., 2010. Private Memoirs of a

Smart Meter. BuildSys.

Qmee, 2013. What Happens on the Internet in 60

Seconds. [Online]

Available at: http://blog.qmee.com/wp-

content/uploads/2013/07/Qmee-Online-In-60-

Seconds21.png

[Accessed 9 April 2014].

Sweeney, L., 2002. k-Anonymity: A Model for

Protecting Privacy. International Journal on

Uncertainty.

UMass, n.d. Smart* Dataset. [Online]

Available at:

http://traces.cs.umass.edu/index.php/Smart/Smart

[Accessed January 2014].

Walker, C., 2013. Data Mining of Home Data

Revealing Lifestyle Changes. School of Computing

Honours.

Xu, J. et al., 2012. Differentially Private Histogram

Publication. 2012 IEEE 28th International Conference

on Data Engineering, pp. 1-12.

